

DECLARATION OF PERFORMANCE

DoP: 0174

for fischer Superbond (Bonded anchor for use in concrete) - EN

1. Unique identification code of the product-type: DoP: 0174

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 15

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-01-0601

European Technical Assessment: ETA-12/0258; 2019-07-22

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):
 See appendix, especially Annexes B 4 – B 8, C 1 – C 10

- Characteristic resistance to shear load (static and quasi-static loading): See appendix, especially Annexes C 1 C 4
- Displacements (static and quasi-static loading): See appendix, especially Annexes C 11, C 12
- Durability: See appendix, especially Annex A 7, B 3
- Characteristic resistance and displacements for seismic performance categories C1 and C2:
 See appendix, especially Annexes A 7, C 13 C 16
 - Factor for annular gap (α_{gap}) = 1,0 (filled gap) respectively 0,5 (non-filled gap)
 - o Displacements ($\delta_{N,eq}$, $\delta_{V,eq}$) for C1: NPD

Hygiene, health and the environment (BWR 3)

- Content, emission and/or release of dangerous substances: See appendix, especially page 3 / NPD
- 8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Thilo Pregartner, Dr.-Ing.

 $Wolfgang\ Hengesbach,\ Dipl.-Ing.,\ Dipl.-Wirtsch.-Ing.$

i.V. W. Myelal

Tumlingen, 2019-11-15

ppa. The Mx

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The injection system fischer Superbond is a bonded anchor for use in concrete consisting of a cartridge with injection mortar fischer FIS SB or a resin capsule fischer RSB and a steel element according to Annex A 5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The resin capsule is placed into the hole and the steel element is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between steel element, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

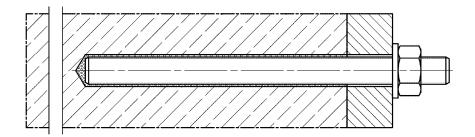
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance for static and quasi-static tension load	See Annex C 1 to C 10				
Characteristic resistance for static and quasi-static shear load	See Annex C 1 to C 4				
Displacements for static and quasi-static loads	See Annex C 11 to C 12				
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 13 to C 16				
Durability	See Annex B 3				

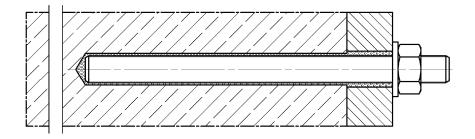
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

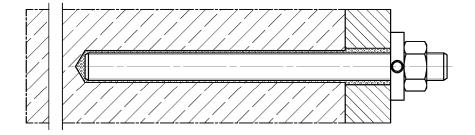
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with European Assessment Document EAD 330499-01-0601the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

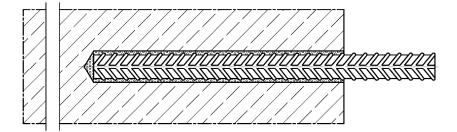

Installation conditions part 1

anchor rod or fischer anchor rod RG M with fischer injection system FIS SB


Pre-positioned installation

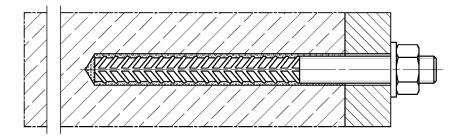
Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected filling disk (annular gap filled with mortar)

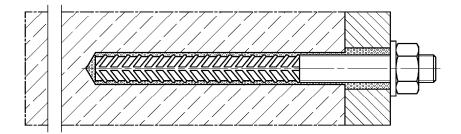

Figures not to scale

Froduct description Installation conditions part 1

Annex A 1


Installation conditions part 2

Reinforcing bar with fischer injection system FIS SB



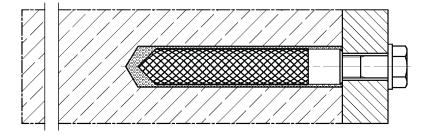
fischer rebar anchor FRA with fischer injection system FIS SB

Pre-positioned installation

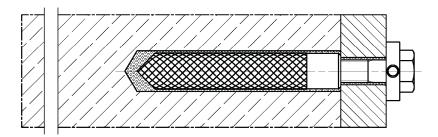
Push through installation (annular gap filled with mortar)

Figures not to scale

fischer Superbond

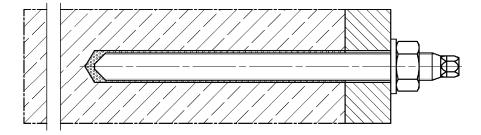

Product description
Installation conditions part 2

Annex A 2

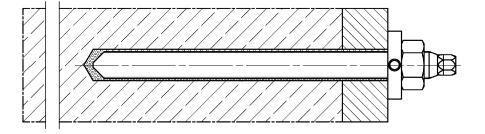

Installation conditions part 3

fischer internal threaded anchor RG MI with fischer resin capsule system RSB or fischer injection system FIS SB

Pre-positioned installation



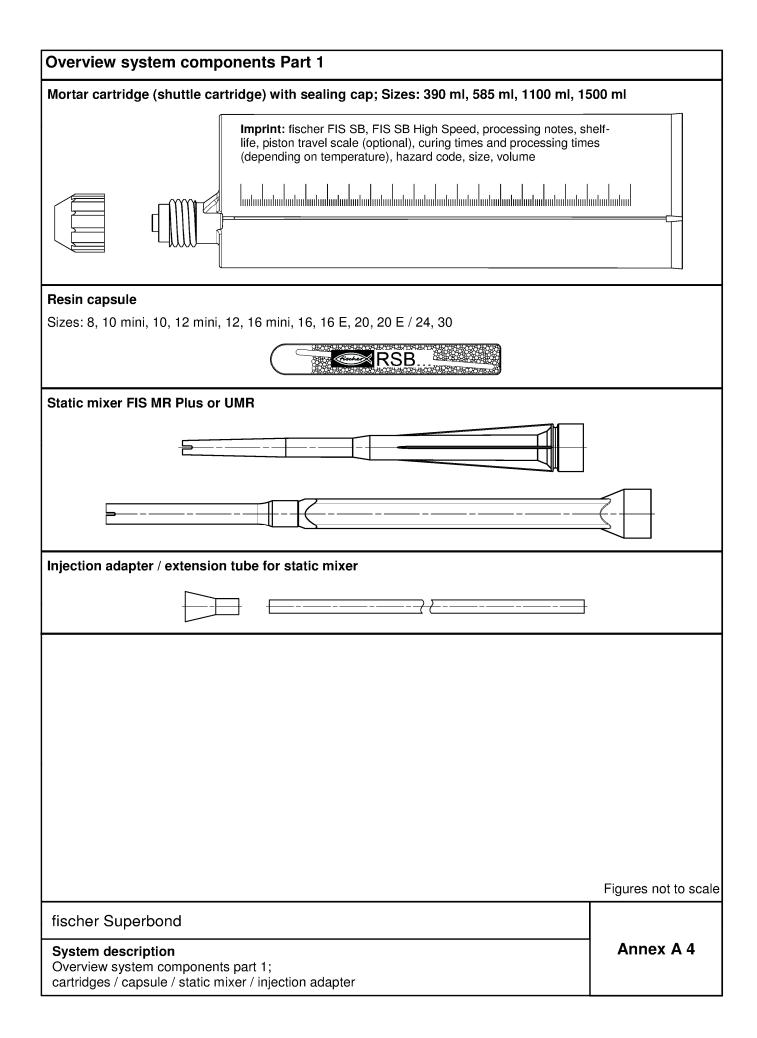
Pre-positioned installation with subsequently injected filling disk (annular gap filled with mortar)



fischer anchor rod RG M with fischer resin capsule system RSB

Pre-positioned installation

Pre-positioned installation with subsequently injected filling disk (annular gap filled with mortar)



Figures not to scale

fischer Superbond

Product description
Installation conditions part 3

Annex A 3

Overview system components Part 2 anchor rod Sizes: M8, M10, M12, M16, M20, M24, M27, M30 fischer anchor rod RG M Sizes: M8, M10, M12, M16, M20, M24, M30 fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameters: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 25\$, \$\phi 28\$, \$\phi 32\$ fischer rebar anchor FRA Sizes: M12, M16, M20, M24 Figures not to scale fischer Superbond Annex A 5 System description Overview system components part 2;

steel components

Overview system components Part 3		
Cleaning brush BS / BSB		
Blow-out pump ABG or ABP with cleaning nozzle	N	
A STATE OF THE STA		0
	=_	Page
fischer car		1 1
		Figures not to sca
fischer Superbond		
System description Overview system components part 3;		Annex A 6
cleaning brush / blow-out pump / injection adapter		

art	Designation		Material					
1	Injection cartridge	Mortar, hardener, filler						
	Steel grade	Steel, zinc plated	Stainless stee A4 1)		High corrosion resistant steel C ²⁾			
2	Anchor rod		O 898-1:2013 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $^{\prime}$ f _{uk} ≤ 1000 N/mm² $^{\prime}$ A ₅ > 12% fracture elongation $^{\prime}$ fracture elongation $^{\prime}$ Fracture elongation $^{\prime}$ A ₅ > 8 %, for applications with for seismic performance category $^{\prime}$ Olated ≥ 5 μm, $^{\prime}$ 1.4401; 1.4404;					
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404 1.4578;1.4571 1.4439; 1.4362 EN 10088-1:201	1.4565; 1.4529; EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	898-2:2012 50, 70 or 80 50, 70 ed ≥ 5 μm, EN ISO 3506-1:2009 EN ISO 3 1.4401; 1.4404; 1.4578; 1.4565 anised ≥ 40 μm 1.4571; 1.4439; 1.4362; EN 1008		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014		Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014			
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K A₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014) A ₅ > 8 % fracture elongation		Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation			
7	fischer filling disk FFD similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4 1.4571; 1.4439; 1.4 EN 10088-1:20	1362;	1.4565;1.4529; EN 10088-1:2014			
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$		004+AC:2	2010			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
		:2014 Corrosion resistance o :2014 Corrosion resistance o						
isc	her Superbond							

Specifications of intended use (part 1)

Anchorages :	subject t	to		FIS SB with							
			ancho	or rod	fischer threaded RG	d anchor	Reinford	cing bar	anchor FRA		
Hammer drilli with standard bit						all s	izes		1		
Hammer drilli with hollow d (fischer "FHD Heller "Duste Expert"; Boso "Speed Clear "TE-CD, TE-	rill bit o", or oh on"; Hilti	ī		Nominal drill bit diameter (d₀) 12 mm to 35 mm							
Diamond drill	ing	-		W. d	A	not pe	rmitted	9,	72W 48		
Static and qu static load, in		uncracked concrete cracked concrete	all sizes	Tables: C1.1 C4.1 C5.1	all sizes	Tables: C2.1 C4.1 C7.1	all sizes	Tables: C3.1 C4.1 C9.1	all sizes	Tables: C3.2 C4.1 C10.1	
Seismic performance category (onl		C1	all sizes	C11.1 Tables: C13.1 C14.2 C15.1	C11.2		all sizes	C12.1 Tables: C14.1 C14.2 C15.2		C12.2	
hammer drilling with standard / hollow drill bits)		C2	M12 M16 M20 M24	Tables: C13.1 C14.2 C16.1							
Use	I1	dry or wet concrete				all s	izes				
category	12	water filled hole				·	rmitted				
Installation di			D3	•			•	•	d) installation	on)	
Installation m	ethod				re-positior				on		
Installation temperature			FIS SI	FIS B High Sp	,		C to $T_{i,max} = C$ to $T_{i,max} = C$				
	Tempe	rature range I	-40 °C	C to +40 °C	C T _{st}	= +40 °C	/ T _{It} = +24	°C			
In-service	Tempe	rature range II	-40 °C	C to +80 °	C T _{st}	= +80 °C	/ T _{It} = +50	°C			
temperature -	Temper	ature range III	-40 °C	to +120 °	C T _{st}	= +120 °C	$C/T_{lt} = +7$	2 °C			
	Tempera	ature range IV	-40 °C	to +150 °	C T _{st}	= +150 °C	$C/T_{lt} = +96$	O °C			
fischer Su	ıperboı	nd									
Intended us Specificatio		1), fischer inje	ection mor	tar system	ı FIS SB				Annex	B 1	

Specifications of intended use (part 2)

Table B2.1: Overview use and performance categories, resin capsule system RSB

Anchorages	subject t	0	RSB with						
			fischer ancho	or rod RG M	fischer internal thre	aded anchor RG M			
Hammer dril with standar bit		E44000000000	all sizes						
Hammer dril with hollow of (fischer "FHI Heller "Duste Expert"; Bos "Speed Clea "TE-CD, TE-	drill bit O", er och n"; Hilti	1	Nominal drill bi 12 mm to	all s	all sizes				
Diamond dri	lling	-		all s	sizes 1)				
Static and qu	uasi _	uncracked concrete	all sizes	Tables: C1.1 C4.1	all sizes	Tables: C2.1 C4.1			
static load, in	n	cracked concrete	all sizes 1)	C4.1 C6.1 C11.1	all sizes 1)	C4.1 C8.1 C11.2			
Seismic performance category (only		C1	Tables: C13.1 C14.2 C15.1						
hammer drill standard / ho drill bits)		C2		-					
Use	l1	dry or wet concrete		all	sizes				
category	12	water filled hole		all	sizes				
Installation c	lirection		D3 (downward	d and horizontal ar	nd upwards (overhead	d) installation)			
Installation n	nethod		only pre-positioned installation						
Installation to	emperatu	ıre		$T_{i,min} = -30$ °C	to $T_{i,max} = +40$ °C				
	Tempe	rature range I	-40 °C to +40 °C	$T_{st} = +40 ^{\circ}C$	C / T _{It} = +24 °C				
In-service	Temper	ature range II	-40 °C to +80 °C						
temperature	Tempera	ature range III	-40 °C to +120 °C	$T_{st} = +120^{\circ}$	$C / T_{lt} = +72 ^{\circ}C$				
	Tempera	ture range IV	-40 °C to +150 °C	$T_{st} = +150$ °	C / T _{It} = +90 °C				
1) For dian	nond drill	ing in cracked c	concrete only nomin	al drill bit diameter	rs $(d_0) \ge 18 \text{ mm are p}$	ermitted			

fischer Superbond	
Intended use Specifications (part 2), fischer resin capsule system RSB	Annex B 2

Specifications of intended use (part 3)

Base materials:

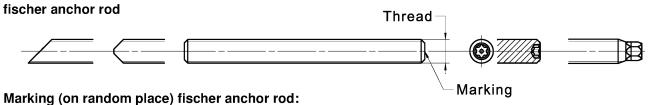
 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 7 table 7.1.

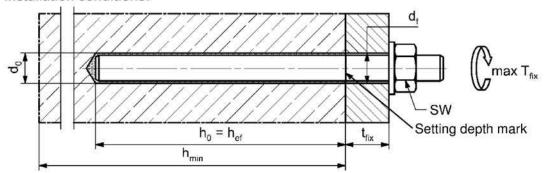
Design:

- · Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055.
 Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 Fastening in stand-off installation or with a grout layer under seismic action are not covered in this European Technical Assessment (ETA).


Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer Superbond	
Intended use Specifications (part 3)	Annex B 3


Table B4.1:	Installation parameters for anchor rods in combination with injection
	mortar system FIS SB

Anchor rods			Thread	М8	M10	M12	M16	M20	M24	M27	M30
Width across flats SW			13	17	19	24	30	36	41	46	
Nominal drill hole o	liameter	d₀		10	12	14	18	24	28	30	35
Drill hole depth		h ₀					h ₀ =	h _{ef}			
Effective embedme	ant donth	h _{ef, min}		60	60	70	80	90	96	108	120
Effective embedment depth -		h _{ef, max}		160	200	240	320	400	480	540	600
ledge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85	105	120	140
Diameter of the	pre-positioned installation	df		9	12	14	18	22	26	30	33
clearance hole of the fixture	push through installation	df		11	14	16	20	26	30	33	40
Min. thickness of concrete member h _{min}		h _{min}		h _{ef} +	30 (≥	100)			h _{ef} + 2do)	
Maximum torque mattachment of the f		max T _{fix}	[Nm]	10	20	40	60	120	150	200	300

Property class 8.8, stainless steel, property class 80 and high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • Alternatively: Colour coding according to DIN 976-1

Installation conditions:

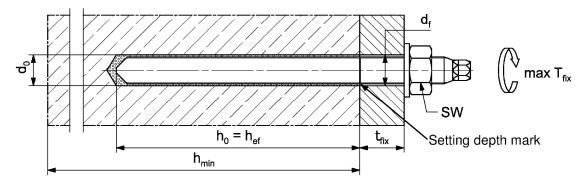
Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- · Materials, dimensions and mechanical properties according to Annex A 7, Table A7.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

fischer Superbond	
Intended use Installation parameters for anchor rods in combination with injection mortar system FIS SB	Annex B 4

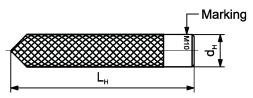
Table B5.1: Installation parameters for fischer anchor rods RG M in combination with resin capsule system RSB

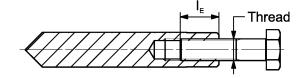
Anchor rod RG M		Thread	M8	M10	M12	M16	M20	M24	M30
Width across flats SW			13	17	19	24	30	36	46
Nominal drill hole diameter	d₀		10	12	14	18	25	28	35
Drill hole depth	h₀					$h_0 = h_{\text{ef}} $			
	h _{ef,1}			75	75	95			
Effective embedment depth	h _{ef,2}		80	90	110	125	170	210	280
	h _{ef,3}			150	150	190	210		
Minimum spacing and minimum edge distance	Smin = Cmin	[mm] [40	45	55	65	85	105	140
Diameter of the pre- clearance hole of the positioned fixture installation	df		9	12	14	18	22	26	33
Min. thickness of concrete member h _{min}				h _{ef} + 30 (≥ 100)			h _{ef} +	- 2d ₀	
Maximum torque moment for attachment of the fixture	max T _{fix}	[Nm]	10	20	40	60	120	150	300


fischer anchor rod RG M

Marking (on random place) fischer anchor rod RG M:

Property class 8.8, stainless steel, property class 80 and high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • Alternatively: Colour coding according to DIN 976-1

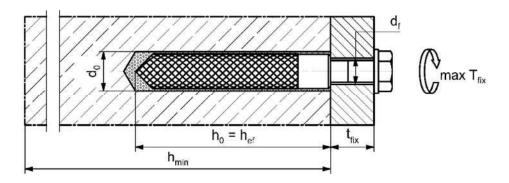

Installation conditions:



fischer Superbond	
Intended use Installation parameters for fischer anchor rods RG M in combination with resin capsule system RSB	Annex B 5

Table B6.1: Installation parameters for fischer internal threaded anchors RG MI												
Internal threaded anchor RG M	I	Thread	М8	M10	M12	M16	M20					
Sleeve diameter	$d = d_H$		12	16	18	22	28					
Nominal drill hole diameter	d₀		14	18	20	24	32					
Drill hole depth	h ₀] [$h_0 = h_{ef} = L_H$							
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200					
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125					
Diameter of clearance hole in the fixture	df		9	12	14	18	22					
Minimum thickness of concrete member	h _{min}		120	125	165	205	260					
Maximum screw-in depth	rew-in depth I _{E,max}		18	23	26	35	45					
Minimum screw-in depth	I _{E,min}]	8	10	12	16	20					
Maximum torque moment for attachment of the fixture	max T _{fix}	[Nm]	10	20	40	80	120					

fischer internal threaded anchor RG MI


Marking: Anchor size e. g.: M10

Stainless steel → additional A4; e.g.: M10 A4

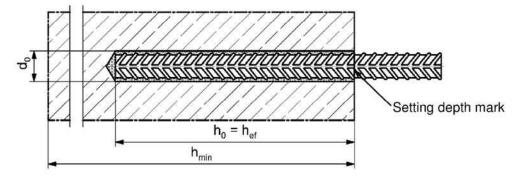
High corrosion resistant steel → additional C; e.g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 7, Table A7.1

Installation conditions:

fischer Superbond	
Intended use Installation parameters for fischer internal threaded anchors RG MI	Annex B 6

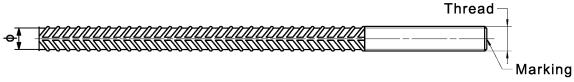
Table B7.1: Installation parameters for reinforcing bars												
Nominal diameter of the bar	ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28	32		
Nominal drill hole diameter	d₀		10 12	12 14	14 16	18	20	25	30	35	40	
Drill hole depth	h ₀		$h_0 = h_{ef}$									
Effective embedment depth	h _{ef,min}		60	60	70	75	80	90	100	112	128	
Effective embedment depth	h _{ef,max}		160	200	240	280	320	400	500	560	640	
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130	160	
Minimum thickness of concrete member	h _{min}			f + 30 2 100)		h _{ef} + 2d ₀						


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar , h_{rib} = rib height)

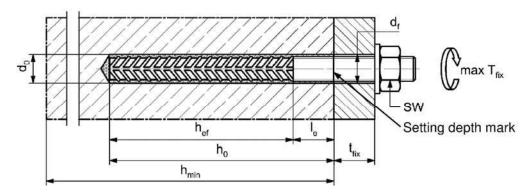
Installation conditions:



fischer Superbond	
Intended use Installation parameters reinforcing bars	Annex B 7

Table B8.1:	Installation p	aramete	ers for f	ischer	rebar	anchor FRA					
Rebar anchor FR	A		Thread	M1	2 ¹⁾	M16	M20	M24			
Nominal diameter	of the bar	ф		12		16	20	25			
Width across flats		SW		1:	9	24	30	36			
Nominal drill hole of	diameter	d ₀		14	16	20	25	30			
Drill hole depth	h ₀				h _{ef}	+ l _e					
Effective embedme	h _{ef,min}		7	0	80	90	96				
Effective embedme	h _{ef,max}		140		220	300	380				
Distance concrete surface to welded joint				100							
Minimum spacing and minimum edge distance		Smin = Cmin	[mm]	55		65	85	105			
Diameter of	pre-positioned anchorage	≤ d _f		14		18	22	26			
clearance hole in the fixture	push through anchorage	≤ d _f		18		22	26	32			
Minimum thickness of concrete member		h _{min}		h ₀ + 30 (≥ 100)		h ₀ + 2d ₀					
Maximum torque moment for attachment of the fixture ma		max T _{fix}	[Nm]	4	0	60	120	150			

¹⁾ Both drill hole diameters can be used


fischer rebar anchor FRA

Marking frontal e. g:

FRA (for stainless steel);
FRA C (for high corrosion resistant steel)

Installation conditions:

fischer Superbond	
Intended use Installation parameters rebar anchor FRA	Annex B 8

Table B9.1:	İ	Dimer	sion o	f resin	capsu	le RSI	3						
Resin capsule RSB			RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E / 24	RSB 30
Capsule diameter	dР	[mm]	9,0	10,5		12,5		16,5			23,0		27,5
Capsule length	L _P	[mm]	85	72	90	72	97	72	95	123	160	190	260

Table B9.2: Assignment of resin capsule RSB to fischer anchor rod RG M

Anchor rod RG M			М8	M10	M12	M16	M20	M24	M30
Effective embedment depth	h _{ef, 1}	[mm]		75	75	95			
Related capsule RSB				10 mini	12 mini	16 mini			
Effective embedment depth	h _{ef, 2}	[mm]	80	90	110	125	170	210	280
Related capsule RSB			8	10	12	16	20	20 E/ 24	30
Effective embedment depth	h _{ef, 3}	[mm]		150	150	190	210		
Related capsule RSB				2 x 10 mini	2 x 12 mini	2 x 16 mini	20 E / 24		

Table B9.3: Assignment of resin capsule RSB to fischer internal threaded anchor RG MI

Internal threaded anch	or RG	МІ	М8	M10	M12	M16	M20
Effective embedment depth	h _{ef}	[mm]	90	90	125	160	200
Related capsule RSB			10	12	16	16 E	20 E / 24

fischer Superbond	
Intended use Dimensions of the capsules; Assignment of the capsule to the fischer anchor rod RG M and fischer internal threaded anchor RG MI	Annex B 9

Table B10.1: Parameters of the cleaning brush BS / BSB (steel brush)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d₀	[mm]	10	12	14	16	18	20	24	25	28	30	32	35	40
Steel brush diameter	dь	[mm]	11	14	16	2	0	25	26	27	30		40		42

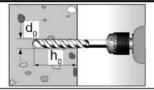
Table B10.2: Maximum processing time of the mortar and minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature. Minimal cartridge temperature +5 °C; minimal resin capsule temperature -15 °C)

Temperature at	· .	ocessing time	Mii	nimum curing tii t _{cure}	me
anchoring base [°C]	FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB
-30 to -20					120 h
> -20 to -15		60 min		24 h	48 h
> -15 to -10	60 min	30 min	36 h	8 h	30 h
> -10 to -5	30 min	15 min	24 h	3 h	16 h
> -5 to ±0	20 min	10 min	8 h	2 h	10 h
> ±0 to +5	13 min	5 min	4 h	1 h	45 min
> +5 to +10	9 min	3 min	2 h	45 min	30 min
> +10 to +20	5 min	2 min	1 h	30 min	20 min
> +20 to +30	4 min	1 min	45 min	15 min	5 min
> +30 to +40	2 min		30 min		3 min

Figures not to scale

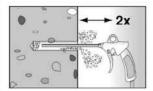
fischer Superbond


Intended use
Cleaning brush (steel brush)
Processing time and curing time

Annex B 10

Installation instructions part 1; Injection mortar system FIS SB

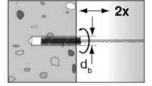
Drilling and cleaning the hole (hammer drilling with standard drill bit)


1

Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0

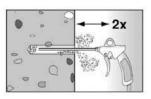
see tables B4.1, B6.1, B7.1, B8.1

2



Clean the drill hole:
Blow out the drill hole twice, with oil free compressed air (p ≥ 6 bar)
In uncracked concrete the use of the manual blow-out pump ABG is possible

(Installation parameters: $d_0 < 18$ mm and $h_{ef} < 10d$)



3

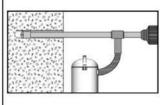
Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **table B10.1**

4

Clean the drill hole:

Blow out the drill hole twice, with oil free compressed air ($p \ge 6$ bar) In uncracked concrete the use of the manual blow-out pump ABG is possible (Installation parameters: $d_0 < 18$ mm and $h_{ef} < 10d$)

Go to step 5 (Annex B 12)


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

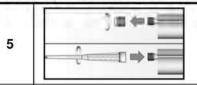
Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables B4.1, B6.1, B7.1, B8.1

Go to step 5 (Annex B 12)


fischer Superbond

Intended use

Installation instructions part 1; injection mortar system FIS SB

Installation instructions part 2; injection mortar system FIS SB

Preparing the cartridge

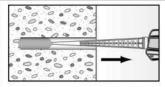
Remove the sealing cap

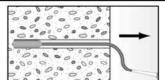
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

6

Place the cartridge into the dispenser

7




Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Injection of the mortar

8

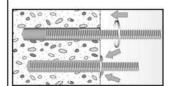
Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

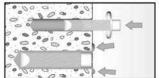
For drill hole depth ≥ 150 mm use an extension tube

For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection-adapter

Go to step 9 (Annex B 13)

fischer Superbond

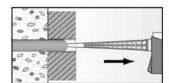

Intended use


Installation instructions part 2; injection mortar system FIS SB

Installation instructions part 3; injection mortar system FIS SB

Installation of anchor rods or fischer internal threaded anchors RG MI

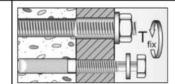
9



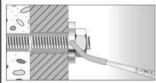
Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element. If not, pull out the anchor element immediately and reinject mortar.

For overhead installations support the anchor rod with wedges. (e. g. fischer centering wedges)

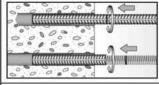

For push through installation fill the annular gap with mortar

11

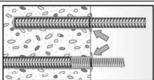

Wait for the specified curing time t_{cure} see table B10.2

12

Mounting the fixture max T_{fix} see **tables B4.1** and **B6.1**


Option

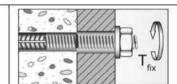
After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc FFD. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS EM Plus)


ATTENTION: Using fischer filling disk FFD reduces t_{fix} (usable length of the anchor)

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

10


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole. If not, pull out the anchor element immediately and reinject mortar.

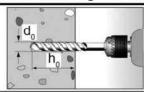
11

Wait for the specified curing time t_{cure} see **table B10.2**

12

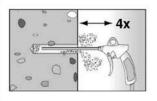
Mounting the fixture max T_{fix} see **table B8.1**

fischer Superbond


Intended use

Installation instructions part 3; injection mortar system FIS SB

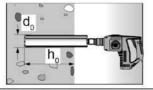
Installation instructions part 4; resin capsule RSB


Drilling and cleaning the hole (hammer drilling with standard drill bit)

1

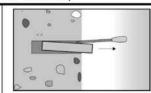
Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B5.1 and B6.1

2

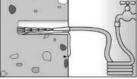

Clean the drill hole: Blow out the drill hole four times, with oil free compressed air ($p \ge 6$ bar) In uncracked concrete the use of the manual blow-out pump ABG is possible (Installation parameters: $d_0 < 18$ mm and $h_{ef} < 10d$)

Go to step 6 (Annex B 15)

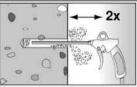
Drilling and cleaning the hole (wet drilling with diamond drill bit)


1

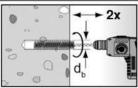
Drill the hole.


Drill hole diameter **d**₀ and drill hole depth **h**₀

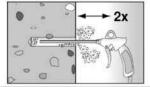
see **tables B5.1** and **B6.1**


Break the drill core and remove it

2


Flush the drill hole with clean water until it flows clear

3


Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

4

Brush the drill hole twice using a power drill. Corresponding brushes see table B10.1

5

Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

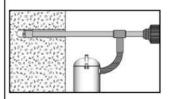
Go to step 6 (Annex B 15)

fischer Superbond

Intended use

Installation instructions part 4; resin capsule RSB

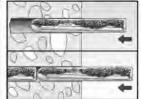
Installation instructions part 5; resin capsule RSB


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see table B2.1) for correct operation of the dust extraction

2

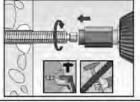

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B5.1 and B6.1

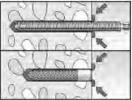
Go to step 6 (Annex B 15)

Installation fischer anchor rod RG M or fischer internal threaded anchor RG MI

6


Insert the resin capsule into the drill hole by hand.
Suitable resin capsule

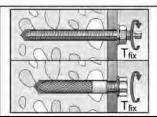
Suitable resin capsule RSB or RSB mini see table B9.2.


Depending on the anchor being installed, use a suitable setting tool

7

Only use clean and grease-free anchors. Using a suitable adapter, drive the fischer anchor rod RG M or the fischer internal threaded anchor RG MI into the capsule using a hammer drill set on rotary hammer action. Stop when the anchor reaches the bottom of the hole and is set to the correct embedment depth

8


When reaching the correct embedment depth, excess mortar must emerge from the mouth of the drill hole. If not, the anchor must be pulled out directly and a second resin capsule must be pushed into the drill hole. Setting process must be repeated (Step 7)

9

Wait for the specified curing time, tcure see table B10.2

10

Mounting the fixture max T_{fix} see tables B5.1 and B6.1

fischer Superbond

Intended use

Installation instructions part 5; resin capsule RSB

Tabl		ntial chara load of fi s									nsile /	
Anch	or rod / standard th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Beari	ng capacity under t	ensile load	, stee	el failu	ure							
O X,S	Ota al mina minta d		5.8		19(17)	29(27)	43	79	123	177	230	281
ristic NRK,s	Steel zinc plated		8.8		29(27)	47(43)	68	126	196	282	368	449
Characteristic esistance N _{Rk.}	Stainless steel A4	Property class	50	[kN]	19	29	43	79	123	177	230	281
Chara resista	and high corrosion	Class	70		26	41	59	110	172	247	322	393
Oğ	resistant steel C		80		30	47	68	126	196	282	368	449
Partia	al factors 1)											
	Stool zine plated		5.8					1,	50			
acto	Steel zinc plated		8.8					1,	50			
al fa /ws,n	Stainless steel A4	Property class	50	[-]				2,	36			
Partial factor	and high corrosion	01455	70					1,502)	/ 1,87			
<u> </u>	resistant steel C		80					1,	60			
Beari	ng capacity under s	hear load,	steel	failu	re							
witho	ut lever arm											
ristic V ⁰ Rk,s	Steel zinc plated		5.8		9(8)	15(13)	21	39	61	89	115	141
eristi 9 V° _F	Steel zille plated	D	8.8		15(13)	23(21)	34	63	98	141	184	225
Characteristic esistance V ⁰ Rk,	Stainless steel A4	Property class	50	[kN]	9	15	21	39	61	89	115	141
har sista	and high corrosion	Sido S	70		13	20	30	55	86	124	161	197
C	resistant steel C		80		15	23	34	63	98	141	184	225
Ductil	ity factor		k ₇	[-]				1	0			
with I	ever arm											
	Steel zinc plated		5.8		19(16)	37(33)	65	166	324	560	833	1123
erist 9 M ^o		Droporty	8.8		30(26)	60(53)	105	266	519	896	1333	1797
acte	Stainless steel A4	Property class		[Nm]	19	37	65	166	324	560	833	1123
Chai sista	Steel zinc plated Stainless steel A4 and high corrosion resistant steel C al factors 1)		70		26	52	92	232	454	784	1167	1573
) re	resistant steel C		80		30	60	105	266	519	896	1333	1797
Partia	al factors 1)			ı								
_	Steel zinc plated		5.8					1,:	25			
actc ,	·	Droporty	8.8					1,:	25			
Partial factor Y ^{Ms,V}	Stainless steel A4	Property class	50	[-]				2,	38			
Part	and high corrosion		70					1,25 ²⁾	/ 1,56			
	resistant steel C		80					1,	33			
2) (r 3) \	n absence of other na Only admissible for hi ods) /alues in brackets are tandard threaded roc	gh corrosior e valid for ur	n resi: nders	stant : ized t	hreaded	rods with	h smalle					

fischer Superbond

Performance
Essential characteristics for the steel bearing capacity of fischer anchor rods and standard threaded rods

Annex C 1

Table C2.1:						el bearing inchors RC		nder tensile	e / shear
fischer internal	threade	ed anchors	RG MI		M8	M10	M12	M16	M20
Bearing capacit	y unde	r tensile loa	ad, stee	el failu	ıre				
		Property	5.8		19	29	43	79	123
Charact. resistance with	NI=-	class	8.8	[kN]	29	47	68	108	179
screw	$N_{Rk,s}$	Property	A4	ַנואו <u>ן</u>	26	41	59	110	172
00.011		class 70	С		26	41	59	110	172
Partial factors1)									
		Property	5.8				1,50		
Partial factors	264	class	8.8	[-]			1,50		
r artial factors	γ̃Ms,N	Property	_A4	ן נ־ <u>ז</u>			1,87		
		class 70	С				1,87		
Bearing capacit	y unde	r shear load	d, steel	failu	re				
Without lever ar	rm								
		Property	5.8		9,2	14,5	21,1	39,2	62,0
Charact. resistance with	V^0 Rk,s	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
screw	V HK,S	Property	_A4	ַ [תוא <u>]</u>	12,8	20,3	29,5	54,8	86,0
		class 70	С		12,8	20,3	29,5	54,8	86,0
Ductility factor			k 7	[-]			1,0		
With lever arm									
		Property	5.8		20	39	68	173	337
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519
screw	IVI~Rk,s	Property	A4	וויאוון	26	52	92	232	454
00,000		class 70	С		26	52	92	232	454
Partial factors1)									
		Property	5.8				1,25		
Partial factors	***	class	8.8				1,25		
ו מונומו ומטנטוס 	γ̃Ms,V	Property	A4	[-]			1,56		
				i .					

1,56

1) In absence of other na	ational regulations	ŝ
---------------------------	---------------------	---

Property class 70

С

fischer Superbond	
Performance Essential characteristics for the steel bearing capacity of fischer internal threaded anchor RG MI	Annex C 2

	ential characteri of reinforcing			bear	ıng ca	pacity	unae	rtensi	le / sh	ear
Nominal diameter of the		ф	8 10	12	14	16	20	25	28	32
Bearing capacity under	tensile load, ste	_	ıre							
Characteristic resistance		[kN]				A _s · f _{uk} 1)	1			
Bearing capacity under	shear load, stee	l failu	re							
Without lever arm	,									
	V ⁰ Rk,s	[kN]			0,5	o · A _s · f	uk ¹⁾			
Ductility factor	k ₇	[-]				0,8				
With lever arm						-				
Characteristic resistance	M ⁰ Rk,s	[Nm]			1,2	· W _{el} · 1	fuk ¹⁾			
	ential characteri of fischer reb a			l bear	ing ca	pacity	unde	r tensi	le / sh	ear
load	of fischer reba		chors FRA	l bear		pacity		r tensi		
load fischer rebar anchor FF	of fischer reba	ar an	chors FRA M12	l bear	ing ca	pacity	unde	r tensi	le / sh	
load fischer rebar anchor FF Bearing capacity under	of fischer rebars RA r tensile load, ste	ar an el fail:	chors FRA M12	bear		pacity		r tensi		4
load fischer rebar anchor FF Bearing capacity under Characteristic resistance	of fischer rebarre RA r tensile load, ste	ar an	M12	bear	M16	pacity	M20	r tensi	M2	4
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor ¹⁾	of fischer rebars RA r tensile load, ste	ar an el fail:	M12	l bear	M16	pacity	M20	r tensi	M2	4
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor ¹⁾ Partial factor	of fischer rebarate	el failu [kN]	M12 Ire 63	bear	M16		M20	r tensi	M2	4
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor ¹⁾ Partial factor Bearing capacity under	of fischer rebarate	el failu [kN]	M12 Ire 63	l bear	M16		M20	r tensi	M2	4
load	of fischer rebards RA r tensile load, stee NRk,s yms,N r shear load, stee	el failu [kN]	M12 Ire 63	bear	M16		M20	r tensi	M2	0
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor Partial factor Bearing capacity under Without lever arm Characteristic resistance	of fischer rebards RA r tensile load, stee NRk,s yms,N r shear load, stee	el failu	M12 Ire 63	l bear	M16		M20 173	r tensi	M2 270	0
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor ¹⁾ Partial factor Bearing capacity under Without lever arm	of fischer rebards RA r tensile load, stee NRk,s yms,N r shear load, stee Vortical Steel k7	el failu [kN] [-] I failu	M12 Ire 63	bear	M16	1,4	M20 173	r tensi	M2 270	0
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor ¹⁾ Partial factor Bearing capacity under Without lever arm Characteristic resistance Ductility factor	of fischer rebards RA r tensile load, stee NRk,s yms,N r shear load, stee Vonk,s k7	el failu [kN] [-] I failu	M12 Ire 63 re	bear	M16	1,4	M20 173	r tensi	M2 270	00
load fischer rebar anchor FF Bearing capacity under Characteristic resistance Partial factor Partial factor Bearing capacity under Without lever arm Characteristic resistance Ductility factor With lever arm	of fischer rebards RA r tensile load, stee NRk,s yms,N r shear load, stee Vonk,s k7	el failu [kN] [-] [kN] [kN]	M12 Ire 63 re	bear	M16 111 55	1,4	M20 173 86	r tensi	M2 270	00

fischer Superbond	
Performance Essential characteristics for the steel bearing capacity of reinforcing bars and fischer rebar anchors FRA	Anne

ve stren C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψ _c C _{cr,sp} S _{cr,sp} C _{cr,N}	[-] [mm]	24 °C	/ 40 °C		4,6	11,0 7,7 1,02 1,04 1,07 1,08 1,09 1,10 1,0 he hef - 1 2,26 h 2 Ccr,sp	f,8 h			
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 $e_f \ge 2,0$ $e_f > 1,3$ $e_f \le 1,3$	K _{cr,N} Igth of Ψ _c C _{cr,sp} S _{cr,sp} C _{cr,N} S _{cr,N}	[mm]	24 °C	/ 40 °C			1,02 1,04 1,07 1,08 1,09 1,10 1,0 he hef - 1 2,26 h 2 C _{Cr,sk}	,8 h			
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 $e_f \ge 2,0$ $e_f > 1,3$ $e_f \le 1,3$	K _{cr,N} Igth of Ψ _c C _{cr,sp} S _{cr,sp} C _{cr,N} S _{cr,N}	[mm]	24 °C	/ 40 °C			1,02 1,04 1,07 1,08 1,09 1,10 1,0 he hef - 1 2,26 h 2 C _{Cr,sk}	,8 h			
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 $e_f \ge 2,0$ $e_f > 1,3$ $e_f \le 1,3$	Ψ _c C _{cr,sp} S _{cr,sp} C _{cr,N} S _{cr,N}	[mm]	24 °C	/ 40 °C			1,02 1,04 1,07 1,08 1,09 1,10 1,0 h _e h _{ef} - 1 2,26 h 2 C _{cr,sp}	,8 h			
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 $e_f \ge 2,0$ $e_f > 1,3$ $e_f \le 1,3$	Ψ _c C _{cr,sp} S _{cr,sp} C _{cr,N} S _{cr,N}	[-] [mm]	24 °C	/ 40 °C			1,04 1,07 1,08 1,09 1,10 1,0 he hef - 1 2,26 h 2 C _{cr,sk}	,8 h			
C30/37 C35/45 C40/50 C45/55 C50/60 $c_{ef} \ge 2.0$ $c_{ef} \ge 1.3$ $c_{ef} \le 1.3$	Ccr,sp Scr,sp Ccr,N Scr,N	[mm] - [mm]					1,04 1,07 1,08 1,09 1,10 1,0 he hef - 1 2,26 h 2 C _{cr,sk}	,8 h			
C35/45 C40/50 C45/55 C50/60 $ef \ge 2,0$ ef > 1,3 $ef \le 1,3$	Ccr,sp Scr,sp Ccr,N Scr,N	[mm] - [mm]					1,07 1,08 1,09 1,10 1,0 h _{ef} - 1 2,26 h 2 c _{cr,sp}	,8 h			
C40/50 C45/55 C50/60 $ef \ge 2,0$ ef > 1,3 $ef \le 1,3$	Ccr,sp Scr,sp Ccr,N Scr,N	[mm] - [mm]					1,08 1,09 1,10 1,0 he hef - 1 2,26 h 2 C _{cr,sk}	,8 h			
C45/55 C50/60 $D_{ef} \ge 2,0$ $D_{ef} > 1,3$ $D_{ef} \le 1,3$	Ccr,sp Scr,sp Ccr,N Scr,N	[mm] - [mm]					1,09 1,10 1,0 h _{ef} - 1 2,26 h 2 c _{cr,sp}	,8 h			
C50/60 $n_{ef} \ge 2.0$ $ef > 1.3$ $n_{ef} \le 1.3$	Scr,sp Ccr,N Scr,N	[mm]					1,10 1,0 h _{ef} - 1 2,26 h 2 C _{cr,sp}	,8 h			
$n_{ef} \ge 2.0$ $n_{ef} > 1.3$ $n_{ef} \le 1.3$	Scr,sp Ccr,N Scr,N	[mm]					1,0 h _{ef} - 1 h _{ef} - 1 2,26 h 2 C _{Cr,sp}	,8 h			
e f > 1,3 hef ≤ 1,3	Scr,sp Ccr,N Scr,N	[mm]					h _{ef} - 1 2,26 h 2 c _{cr,sp}	,8 h			
e f > 1,3 hef ≤ 1,3	Scr,sp Ccr,N Scr,N	[mm]					h _{ef} - 1 2,26 h 2 c _{cr,sp}	,8 h			
e f > 1,3 hef ≤ 1,3	Scr,sp Ccr,N Scr,N	[mm]					h _{ef} - 1 2,26 h 2 c _{cr,sp}	,8 h			
n _{ef} ≤ 1,3	Scr,sp Ccr,N Scr,N	[mm]					2,26 h 2 c _{cr,sp} 1,5 h _e	ef O			
	Ccr,N Scr,N	[-]					2 C _{cr,sp}	f			
sion load	Ccr,N Scr,N	[-]					1,5 h _e	f			
sion load	Scr,N	[-]			T = 2 00		-				
sion load	Scr,N	[-]					-				
sion load	d						∠ Ucr,N	1			
sion load					T 50 04						
	Ψ^{0}_{sus}					2 / 00 /	- T-7	200/	100.00	L00.00./	150.00
	$\Psi^{0}_{ ext{sus}}$	[-]	0			C / 80 °	0 /		120 °C	90 °C /	
				,84		0,86		0,8	34	0,9	91
	γinst	[-]					1,0				
	k ₈	[-]					2,0				
r load		[-]							992-4:2 rmular i		
		'									
			M8	M10	M12	M1	6 1	<i>1</i> 20	M24	M27	M30
	ــا		0	10	10	1,			0.4	0.7	-00
	d _{nom}		8	10	12	16	·	20	24	27	30
G MI	d _{nom}	[mm]	12	16	18	22	2	28	-	-	-
	d _{nom}		-	-	12	16	3	20	25	-	-
ie bar)		ф	8	10	12	14	16	20	25	28	32
,	dnom							+		_	32
	ne bar)		ne bar) þ	ne bar)	ne bar)	ne bar)	ne bar)	ne bar)	ne bar) ф 8 10 12 14 16 20 d _{nom} [mm] 8 10 12 14 16 20	ne bar)	ne bar)

Table (C5.1	: Essential standard mortar F	threa	ded rods	s in ha	mmer c	drilled h	oles in				-
Anchor	rod /	standard thread	led rod		М8	M10	M12	M16	M20	M24	M27	M30
Combine	ed pu	Illout and concr	ete con	e failure								
Thread d	liame	ter	d	[mm]	8	10	12	16	20	24	27	30
Uncrack	ed co	oncrete										
		c bond resistan										
<u>Hammer</u>		ng with standard	<u>drill bit o</u>	r hollow d	<u>rill bit (d</u>	ry or wet	concret	<u>e)</u>	•		•	
	l:	24 °C / 40 °C			12	13	13	13	13	12	10	10
Tem-	II:	50 °C / 80 °C		[[N] / ma ma 27]	12	12	12	13	13	12	10	10
perature range	III:	72 °C / 120 °C	τ _{Rk,ucr}	[N/mm²]	10	11	11	11	11	11	9,0	9,0
	IV:	90 °C / 150 °C			10	10	10	11	10	10	8,0	8,0
Installati	on fa	actors					I.			I		
Dry or we	et cor	ncrete	γinst	[-]				1	,0			
Cracked	cond	crete										
Characte	eristi	c bond resistan	ce in cra	acked cor	ncrete C	20/25						
<u>Hammer</u>	-drillir	ng with standard	drill bit o	r hollow d	rill bit (d	ry or wet	t concret	<u>e)</u>				
	I:	24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
Tem-	II:	50 °C / 80 °C			6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
perature range	III:	72 °C / 120 °C	τRk,cr	[N/mm ²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
	IV:	90 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5
Installati	on fa	actors		1						I		
Dry or we	et cor	ncrete	γinst	[-]				1	,0			
			1						•			

fischer Superbond	
Performance	Annex C 5
Essential characteristics of tensile resistance for fischer anchor rod and	
standard threaded rods with injection mortar FIS SB	

Table C6.1:	Essential in hamme uncracke	er or di	amond d	rilled ho	oles in co					_
Anchor rod RG	М			М8	M10	M12	M16	M20	M24	M30
Combined pull	out and concr	ete con	e failure							
Thread diameter	r	d	[mm]	8	10	12	16	20	24	30
Uncracked con										
Characteristic t										
<u>Hammer-drilling</u>		drill bit c	<u>r hollow d</u>			l			<u> </u>	
_	4 °C / 40 °C			12	13	13	13	13	12	10
Tem- II: 5 perature	0 °C / 80 °C	TDL	 [N/mm²]	12	12	12	13	13	12	10
range III: 7	2 °C / 120 °C	τ _{Rk,ucr}	[[,4/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	11	11	11	11	11	9,0
IV: 9	0 °C / 150 °C			10	10	10	11	10	10	8,0
Diamond-drilling	(dry or wet co	ncrete a	s well as v	water fille	d hole)					
l: 2	4 °C / 40 °C			13	13	14	14	14	13	11
	0 °C / 80 °C		 	12	13	13	14	13	13	10
perature ——— range III: 7	2 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	11	12	12	12	12	11	9,5
	0 °C / 150 °C			10	11	11	11	11	10	8,5
Installation fact	tors							<u> </u>		,
Dry or wet concr	rete		[-]				1,0			
Water filled hole		γinst	[-]	1	,2		-	1,0		
Cracked concre	ete									
Characteristic b	oond resistan	ce in cr	acked cor	ncrete C2	20/25					
<u>Hammer-drilling</u>	with standard	drill bit c	r hollow d	<u>rill bit (dr</u>	or wet co	oncrete as	well as v	vater filled	<u>d hole)</u>	
l: 2	4 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5
Tem- II: 5 perature	0 °C / 80 °C	TD.	 [N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0
range III: 7	2 °C / 120 °C	TRk,cr	[[14/11111]	5,5	6,0	6,5	6,5	6,5	6,5	6,0
	0 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5
Diamond-drilling	(dry or wet co	ncrete a	s well as v	vater fille	d hole)		ı			L
l: 2	4 °C / 40 °C						7,5	7,5	7,5	7,5
	0 °C / 80 °C						7,5	7,5	7,5	7,0
perature ——— range III: 7	2 °C / 120 °C	TRk,cr	[N/mm ²]				6,5	6,5	6,5	6,5
	0 °C / 150 °C						6,0	6,0	6,0	6,0
Installation fact			1		l			1 - /-	1 -,-	
Dry or wet concr			[-]				1,0			
Water filled hole		γinst	[-]	1	,2			1,0		
fischer Supe	rbond									
Performance Essential chara capsule RSB	acteristics of te	nsile res	sistance fo	r fischer	anchor ro	d RG M w	ith resin		Annex	C 6

Table C7.1: Essential characteristics of tensile resistance for fischer internal threaded anchors RG MI in hammer drilled holes in combination with injection mortar FIS SB; uncracked or cracked concrete

Internal	threa	ided anchor RG	МІ		М8	M10	M12	M16	M20
Combine	ed pu	Illout and concr	ete con	e failure					
Sleeve d	ame	ter	d	[mm]	12	16	18	22	28
Uncrack	ed co	oncrete							
Characte	eristi	c bond resistan	ce in un	cracked (concrete C20	0/25			
Hammer-	-drillir	ng with standard	drill bit o	r hollow d	rill bit (dry or	wet concrete)		
	l:	24 °C / 40 °C			12	12	11	11	9,5
Tem-		50 °C / 80 °C		[N]/mm21	12	11	11	10	9,0
perature range	III:	72 °C / 120 °C	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,0	8,0
-	IV:	90 °C / 150 °C			10	9,5	9,0	8,5	7,5
Installati	on fa	actors					•		
Dry or we	et cor	ncrete	γinst	[-]			1,0		
Cracked	con	crete							
Characte	eristi	c bond resistan	ce in cr	acked cor	ncrete C20/2	5			
Hammer-	-drillir	ng with standard	drill bit o	r hollow d	rill bit (dry or	wet concrete)		
	<u>l:</u>	24 °C / 40 °C					5,0		
Tem-		50 °C / 80 °C	_	[N]/mm ²¹			5,0		
perature range	III:	72 °C / 120 °C	τRk,cr	[N/mm²]			4,5		
J	IV:	90 °C / 150 °C					4,0		
Installati	on fa	actors		'					
Dry or we	et cor	ncrete	γinst	[-]			1,0		

fischer Superbond	
Performance Essential characteristics of tensile resistance for fischer internal threaded anchor RG MI with injection mortar FIS SB	Annex C 7

andard dr 40 °C 80 °C 120 °C 150 °C r wet cond	d in un ill bit o	[mm] cracked cor hollow dri	12 12 11	M10 16 0/25 wet concrete = 12 11 10	18 as well as wa 11 11 10	11 10	9,5 9,0		
esistance andard dr 40 °C 80 °C 120 °C 150 °C r wet cond	d in un ill bit o	[mm] cracked cor hollow dri	Discrete C2 Il bit (dry or 12 12 11	0/25 wet concrete	as well as wa 11	ter filled hole) 11 10	9,5		
andard dr 40 °C 80 °C 120 °C 150 °C r wet cond	e in un rill bit o	cracked cor hollow dri	Discrete C2 Il bit (dry or 12 12 11	0/25 wet concrete	as well as wa 11	ter filled hole) 11 10	9,5		
andard dr 40 °C 80 °C 120 °C 150 °C r wet cond	r <u>ill bit ο</u> τ _{Rk,ucr}	N/mm²]	12 12 12 11	12 11	11 11	11 10	9,5		
andard dr 40 °C 80 °C 120 °C 150 °C r wet cond	r <u>ill bit ο</u> τ _{Rk,ucr}	N/mm²]	12 12 12 11	12 11	11 11	11 10	9,5		
40 °C 80 °C 120 °C 150 °C r wet cond	TRk,ucr	[N/mm²] —	12 12 11	12 11	11 11	11 10	9,5		
80 °C 120 °C 150 °C r wet cond			12 11	11	11	10			
120 °C 150 °C r wet cond 40 °C			11				9,0		
120 °C 150 °C <u>r wet cond</u> 40 °C				10	10				
r wet cond	crete a		4.0		10	9,0	8,0		
40 °C	crete a		10	9,5	9,0	8,5	7,5		
		s well as wa	ater filled ho						
			13	12	12	11	10		
80 °C	τ _{Rk,ucr}	 [N/mm²]	13	12	12	11	9,5		
120 °C	vnk,uci	[[,,,,,,,,,,,,]	11	11	10	9,5	8,5		
150 °C			10	10	9,5	9,0	8,0		
	Vinet	[-]			1,0				
	Tiller	[-]	1,2		1,	0			
!_	_ !			-					
					ac woll ac wa	tor filled hale)			
	III DIL O	T Hollow an	ii bit (ary or	wet concrete a		<u>ter illied fiole)</u>	-		
		-			•				
	τ _{Rk,cr}	[N/mm²]							
		<u> </u>			4,0				
	crete a	s well as wa		<u>le)</u>		0			
40 °C									
~~~		, ,		i	5				
80 °C	τRk,cr	  [N/mm²]			•	0			
120 °C	TRk,cr	[N/mm²]			4,				
	TRk,cr	[N/mm²] –			•	5			
120 °C	TRk,cr				4,	5			
120 °C	TRk,cr	[N/mm²] –			4,	5 0			
	esistance tandard dr 40 °C 80 °C 120 °C 150 °C	resistance in cratandard drill bit of 40 °C 120 °C 150 °C r wet concrete as	150 °C  γinst [-]  resistance in cracked conditated drill bit or hollow drill do °C 80 °C 120 °C 150 °C r wet concrete as well as wel	150 °C  10  γinst  [-]  1,2  resistance in cracked concrete C20/2  tandard drill bit or hollow drill bit (dry or  40 °C  80 °C  120 °C  150 °C  r wet concrete as well as water filled ho	150 °C  10  10  10  γinst  [-]  1,2  resistance in cracked concrete C20/25  tandard drill bit or hollow drill bit (dry or wet concrete at the	150 °C 10 10 9,5    Figure   Figure	150 °C 10 10 9,5 9,0    Image: First order of the content of the		

Combined pullout and concrete cone failure	Table C9.1:	Essential hammer o uncracke	drilled h	oles in o	combi	nation					_		
Bar diameter   d   [mm]   8   10   12   14   16   20   25   28   32	Nominal diamete	r of the bar		ф	8	10	12	14	16	20	25	28	32
Characteristic bond resistance in uncracked concrete C20/25     Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)     I: 24 °C / 40 °C   II: 50 °C / 80 °C   III: 72 °C / 150 °C   IIII: 72 °C / 150 °C   IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Combined pullor	ut and concre	ete cone	failure									
Characteristic bond resistance in uncracked concrete C20/25   Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)   I: 24 °C / 40 °C   II: 50 °C / 80 °C   III: 72 °C / 120 °C   IV: 90 °C / 150 °C   IV: 90 °C	Bar diameter		d	[mm]	8	10	12	14	16	20	25	28	32
Section   Sec	Uncracked conc	rete											
Section   Sec	Characteristic bo	ond resistan	ce in un	cracked (	concre	te C20/	25						
Temperature range	Hammer-drilling w	<u>ith standard (</u>	drill bit o	r hollow d	rill bit (d	dry or w	et conc	rete)	Г		1		
III   30	l: 24	°C / 40 °C			8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Tange   III: 72 °C / 120 °C   7,0   7,5   8,0   8,0   8,5   8,5   8,0   7,5   6,6   6,5   7,0   7,0   7,5   7,5   8,0   7,5   7,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0   6,0	11. 50	°C / 80 °C		[N 1 / 27]	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
IV: 90 °C / 150 °C   6,5   7,0   7,0   7,5   7,5   8,0   7,5   7,0   6,0	' III. 70	°C / 120 °C	τRk,ucr	[IN/mm²]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
Dry or wet concrete   γinst   [-]   1,0		°C / 150 °C			6,5	7.0	7,0	7,5	7,5	8.0	7,5	7,0	6,0
Dry or wet concrete   γinst   [-]   1,0				1	L , -	ı ,-		L , -	ı ,-	ı ,-		l '-	,,,
Cracked concrete  Characteristic bond resistance in cracked concrete C20/25  Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)    Concrete C20/25			γinst	[-]					1,0				
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)    I: 24 °C / 40 °C     Temperature range   II: 50 °C / 80 °C     III: 72 °C / 120 °C     IV: 90 °C / 150 °C     IV: 90 °C	Cracked concret	<u>е</u>	,										
Temperature range   I: 24 °C / 40 °C	Characteristic bo	ond resistan	ce in cra	cked co	ncrete	C20/25							
Temperature range   II: 50 °C / 80 °C   TRK,cr   TRK,cr	Hammer-drilling w	ith standard	drill bit o	r hollow d	rill bit (d	dry or w	et conc	rete)					
Perature range   III:   72 °C / 120 °C     TRk,cr     TRK,cr	l: 24	°C / 40 °C			4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
range III: 72 °C / 120 °C	11. 50	°C / 80 °C			4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
IV: 90 °C / 150 °C 3,5 4,5 4,5 5,5 5,0 5,0 5,0 5,0 Installation factors	' III. 70	°C / 120 °C	τ _{Rk,cr}	[N/mm ² ]	4.0	5.0	5.0	5.0	6.0	5.5	5.5	5.5	5,5
Installation factors	Tange				-	, , , , , , , , , , , , , , , , , , ,			· ·		· ·	· ·	5,0
					0,0	1,0	1,0	1,0	0,0	0,0			
			Vinet	[-]					1.0				

Essential characteristics of tensile resistance for reinforcing bars with injection mortar

Performance

FIS SB

Table C10.1: Essential characteristics of tensile resistance for fischer rebar anchors FRA in hammer drilled holes in combination with injection mortar FIS SB; uncracked or cracked concrete

		unciacke	o oi ci	ackeu (	Concrete								
fischer re	ebar	anchor FRA			M12	M16	M20	M24					
Combine	d pu	Illout and concr	ete cone	failure									
Bar diam	eter		d	[mm]	12	16	20	25					
Uncrack	ed co	oncrete											
Characte	risti	c bond resistan	ce in un	cracked o	concrete C20/25	•							
Hammer-	drillir	ng with standard	drill bit o	hollow d	rill bit (dry or wet	concrete)							
	l:	24 °C / 40 °C			9,0	9,5	10	9,5					
Tem-	II:	50 °C / 80 °C	_	[N1/mm2]	9,0	9,5	9,5	9,0					
ang	III:	72 °C / 120 °C	TRk,ucr	[N/mm²]	8,0	8,5	8,5	8,0					
	IV:	90 °C / 150 °C			7,0	7,5	8,0	7,5					
Installati	IV: 90 °C / 150 °C												
Dry or we	t cor	ncrete	γinst	[-]	1	1	,0						
Cracked	cond	crete											
Characte	risti	c bond resistan	ce in cra	cked cor	ncrete C20/25								
Hammer-	drillir	ng with standard	drill bit o	r hollow d	rill bit (dry or wet	concrete)							
	l:	24 °C / 40 °C			6,0	7,0	6,0	6,0					
Tem-	II:	50 °C / 80 °C		[N/mm ² ]	5,5	6,5	6,0	6,0					
perature range	III:	72 °C / 120 °C	τ _{Rk,cr}	[IN/IIIII-]  	5,0	6,0	5,5	5,5					
	IV:	90 °C / 150 °C			4,5	5,5	5,0	5,0					
Installati	on fa	actors											
Dry or we	t cor	ncrete	γinst	[-]		1	,0						

fischer Superbond	
Performance Essential characteristics of tensile resistance for fischer rebar anchors FRA with injection mortar FIS SB	Annex C 10

Table (	Table C11.1: Displacements for anchor rods														
Anchor i	rod	М8	M10	M12	M16	M20	M24	M27	M30						
Displace	Displacement-Factors for tensile load ¹⁾														
Uncrack	Jncracked or cracked concrete; Temperature range I, II, III, IV														
δ _{N0-Factor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,12	0,13						
δN∞-Factor	[[[[[[]]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19						
Displace	ement-Factors	for shear I	oad ²⁾												
Uncrack	Uncracked or cracked concrete; Temperature range I, II, III, IV														
δvo-Factor	[mm/kNI]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05						
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07						

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$ 

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$ 

 $(\tau_{Ed}$ : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{\text{Ed}}$ 

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$ 

(V_{Ed}: Design value of the applied shear force)

# Table C11.2: Displacements for fischer internal threaded anchors RG MI

Internal anchor I	threaded RG MI	M8	M10	M12	M16	M20							
Displace	ement-Factors	for tensile load1)											
Uncracked or cracked concrete; Temperature range I, II, III, IV													
δ _{N0} -Factor	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19							
δ _{N∞-Factor}	[[mm/(N/mm=)]	0,13	0,15 0,15		0,17	0,19							
Displace	ment-Factors	for shear load ²⁾	-										
Uncrack	ed or cracked	concrete; Tempe	rature range I, II,	III, IV									
δvo-Factor	[mm//LN]]	0,12	0,09	0,08	0,07	0,05							
δv∞-Factor	[mm/kN]	0,18	0,14	0,12	0,10	0,08							

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$ 

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$ 

 $(\tau_{Ed}$ : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$ 

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$ 

(V_{Ed}: Design value of the applied shear force)

fisch	or	Q,	ına	rh	<u>an</u>	٦
HSCI	ıeı	. 71	# )()	11)	()  10	1

# Performance

Displacements for anchor rods and fischer internal threaded anchors RG MI

Table (	Table C12.1: Displacements for reinforcing bars													
Nominal of the ba	diameter ar	8	10	12	14	16	20	25	28	32				
Displacement-Factors for tensile load ¹⁾														
Uncracked or cracked concrete; Temperature range I, II, III, IV														
δ _{N0} -Factor	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13				
δn∞-Factor	][[[]]]/([]/[]]]] 	0,11	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20				
Displace	ment-Factors	for shear	load ²⁾											
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II, III, I	٧								
δvo-Factor	[mm/kN]]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05				
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06				

1) Calculation of effective displacement:

( $\tau_{Ed}$ : Design value of the applied tensile stress)

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{\text{Ed}}$ 

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$ 

 $\delta V_{\infty} = \delta V_{\infty}$ -Factor ·  $V_{Ed}$ 

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$ 

(V_{Ed}: Design value of the applied shear force)

²⁾ Calculation of effective displacement:

# Table C12.2: Displacements for fischer rebar anchors FRA

fischer r FRA	ebar anchor	M12	M16	M20	M24							
Displace	ment-Factors	for tensile load1)		-								
Uncrack	Uncracked or cracked concrete; Temperature range I, II, III, IV											
δ _{N0} -Factor	[mm/(N/mm²)]	0,09	0,10	0,11	0,12							
δ _{N∞} -Factor	[[mm/(N/mm=)]	0,13	0,15	0,16	0,18							
Displace	ment-Factors	for shear load ²⁾		-								
Uncrack	Uncracked or cracked concrete; Temperature range I, II, III, IV											
δvo-Factor	[mm/kN]	0,12 0,09		0,07	0,06							
δv∞-Factor	[IIIIII/KIN]	0,18	0,14	0,11	0,09							

1) Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$ 

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$ 

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$ 

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$ 

 $(\tau_{Ed}$ : Design value of the applied tensile stress)

(V_{Ed}: Design value of the applied shear force)

fischer Superbond		
Performance		

Displacements for reinforcing bars and fischer rebar anchors FRA

**Table C13.1:** Essential characteristics²⁾ for the **steel bearing capacity** under tensile / shear load of **fischer anchor rods** and **standard threaded rods** under seismic action performance category **C1 or C2** 

Anch	or rod / standard th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Beari	ng capacity under t	ensile load	, stee	el failu	ıre ¹⁾							
fisch	er anchor rods and	standard th	read	ed ro	ds, per	formanc	e catego	ory C1				
C re-	Steel zinc plated		5.8		19	29(27)	43	79	123	177	230	281
Stic 1	Steel Zillo plated		8.8		30	47(43)	68	126	196	282	368	449
ctersti	Stainless steel A4	Property class	50	[kN]	19	29	43	79	123	177	230	281
Characterstic resistance NRK,s,eq,c	and high corrosion		70		26	41	59	110	172	247	322	393
Ch Sist	resistant steel C		80		30	47	68	126	196	282	368	449
fischer anchor rods and standard threaded rods, performance category C2												
re-	Steel zinc plated		5.8				39	72	108	177		
1 0 0	Steel Zillo plated		8.8				61	116	173	282		
teristi e N _{RK.}	Stainless steel A4	Property class	50	[-]			39	72	108	177		
Characte	and high corrosion	Old SS	70				53	101	152	247		
Sist	resistant steel C		80				61	116	173	282		
Beari	ng capacity under s	hear load,	steel	failu	re witho	ut lever	arm ¹⁾					
fisch	er anchor rods, perf	ormance ca	atego	ory C1	ľ							
<b>6</b> G	Steel zinc plated	Property class	5.8	[kN]	9	15(13)	21	39	61	89	115	141
Stic 1			8.8		15	23(21)	34	63	98	141	184	225
terstic V ^o rk,	Stainless steel A4		50		9	15	21	39	61	89	115	141
Characterstic resistance V ⁰ Rk,s,eq,C	and high corrosion		70		13	20	30	55	86	124	161	197
Ch Sist	resistant steel C		80		15	23	34	63	98	141	184	225
Stand	dard threaded rods,	performan	се са	tegor	y C1							
<b>d</b> 6	Stool zine plated		5.8		6	11(9)	15	27	43	62	81	99
stic Rk,s,e	Steel zinc plated	_	8.8		11	16(14)	24	44	69	99	129	158
cterstic 9 V ⁰ Rks	Stainless steel A4	Property class	50	[kN]	6	11	15	27	43	62	81	99
Characterstic resistance Vork, s, eq. c	and high corrosion	Ciass	70		9	14	21	39	60	87	113	138
Ch Sista	resistant steel C		80		11	16	24	44	69	99	129	158
fisch	er anchor rods and	standard th	read	ed ro	ds, peri	ormanc	e catego	ory C2				
re-	Ctaal zina platad		5.8				14	27	43	62		
tic r	Steel zinc plated		8.8				22	44	69	99		
ters > V ₀	Stainless steel A4	Property class	50	[-]			14	27	43	62		
Characterstic resistance Vork, s, eq. c.	and high corrosion	Ciass	70				20	39	60	87		
Ch Sist	resistant steel C		80				22	44	69	99		

¹⁾ Partial factors for performance category C1 or C2 see table C14.2; for fischer anchor rods FIS A / RG M the factor for steel ductility is 1,0

²⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanized standard threaded rods according to EN ISO 10684:2004+AC:2009.

fischer Superbond	
Performance	Annex C 13
Essential characteristics for the steel bearing capacity for fischer anchor rods and standard threaded rods under seismic action (performance category C1 / C2)	

Table C14.1:	Essential characteristics for the <b>steel bearing capacity</b> under tensile / shear
	load of reinforcing bars (B500B) under seismic action performance
	category C1

Nominal diameter of the bar φ 8 10 12 14 16 20 25									28	32		
Bearing capacity under tensile load, steel failure ¹⁾												
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1												
Characteristic resistance N _{Rk,s,eq,C1} [kN] 28 44 63 85 111 173 270 339 443												
Bearing capacity under shear load, stee	Bearing capacity under shear load, steel failure without lever arm ¹⁾											
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1												
Characteristic resistance V ⁰ Rk,s,eq.	,c1 [kN]	10	15	22	30	39	61	95	119	155		

¹⁾ Partial factors for performance category C1 see table C14.2

Table C14.2: Partial factors for fischer anchor rods, standard threaded rods and reinforcing bars (B500B) under seismic action performance category C1 or C2

Anchor rod / standard threaded rod						M10	M12	2 M	16 N	/120	M24	M27	M30
Nominal diameter of the bar φ						10	12	14	16	20	25	28	32
Tens	ile load, steel failure	,1)											
7	Ctaal zina platad		5.8		1,50								
/Ws,h	Steel zinc plated		8.8						1,50				
cto	Stainless steel A4	Property class	50	r 1					2,86				
Partial factor y _{Ms,N}	and high corrosion resistant steel C	o laco	70	[-]	1,502) / 1,87								
			80		1,60								
"	Reinforcing bar	В	500B		1,40								
Shea	r load, steel failure1)												
>	Ctool zine plated		5.8		1,25								
YMs,	Steel zinc plated	  _	8.8		1,25								
cto	Stainless steel A4	Property class	50	r 1	2,38								
al fa	and high corrosion	Class	70	[-]	1,252) / 1,56								
Partial factor γ _{Ms,ν}	resistant steel C		80		1,33								
	Reinforcing bar	В	500B						1,50				

¹⁾ In absence of other national regulations

fischer Superbond	
Performance	Annex C 14
Essential characteristics for the steel bearing capacity for reinforcing bars under seismic action (performance category C1); partial factors (performance category C1 / C2)	

²⁾ Only admissible for high corrosion resistant steel C, with  $f_{yk}$  /  $f_{uk} \ge 0.8$  and  $A_5 > 12$  % (e.g. fischer anchor rods)

Table C15.1:	Essential characteristics of resistance for fischer anchor rods and standard
	threaded rods in hammer drilled holes with injection mortar FIS SB or resin
	capsule RSB under seismic action performance category C1

Anchor I	rod /	standard thread	ded rod		М8	M10	M12	M16	M20	M24	M271)	M30	
Characte	Characteristic bond resistance, combined pullout and concrete cone failure												
	Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete; resin capsule RSB additional in water filled holes)												
	l:	24 °C / 40 °C			4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4	
Tem-		50 °C / 80 °C	_	[N/mm²] -	4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0	
perature range	III:	72 °C / 120 °C	TRk,eq,C1		3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1	
	IV:	90 °C / 150 °C			3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7	
Installati	ion fa	actors											
Tensile l	load												
Dry or we	et cor	ncrete		r 1	1,0								
Water filled hole		γinst	[-]	1,2 ²⁾ 1,0 ²⁾									
Shear lo	ad												
All install	ation	conditions	γinst	[-]				1	,0	·			
							•	•	•				

¹⁾ Only use with injection mortar FIS SB

**Table C15.2:** Essential characteristics of **resistance** for **reinforcing bars** in hammer drilled holes with **injection mortar FIS SB** under seismic action performance category **C1** 

Nominal	dian	neter of the bar		ф	8	10	12	14	16	20	25	28	32
Characte	haracteristic bond resistance, combined pullout and concrete cone failure												
Hammer	lammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)												
	l:	24 °C / 40 °C	_	[N/mm²]	3,2	4,3	4,5	4,5	5,3	4,5	4,5	4,5	5,1
Tem-	II:	50 °C / 80 °C			3,2	3,9	4,1	4,1	4,9	4,5	4,5	4,5	5,1
perature range	III:	72 °C / 120 °C	TRk,eq,C1		2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	4,7
	IV:	90 °C / 150 °C			2,5	3,2	3,4	3,4	4,1	3,8	3,8	3,8	4,3
Installati	on fa	actors											
Tensile I	oad												
Dry or we	et cor	ncrete	$\gamma$ inst	[-]					1,0				
Shear loa	ad		·										
All install	ation	conditions	γinst	[-]	1,0								

fischer Superbond	
Performance Essential characteristics under seismic action (performance category C1) for fischer anchor rods, standard threaded rods and reinforcing bars	Annex C 15

²⁾ Only use with resin capsule RSB in water filled hole

Table C16.1: Essential characteristics of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes with injection mortar FIS SB under seismic action performance category C2

Anchor i	rod / standard threa	ded rod		M12	M16	M20	M24				
Characte	Characteristic bond resistance, combined pullout and concrete cone failure										
Hammer	drilling with stand	ard drill b	it or holl	ow drill bit (dry	or wet concrete	·)					
	I: 24 °C / 40 °C			4,5	2,6	3,0					
Tem-	II: 50 °C / 80 °C		[N1/mm2]	4,5	3,2	2,6	3,0				
perature range	III: 72 °C / 120 °C	TRk,eq,C2	[N/mm ² ]	3,9	2,7	2,3	2,6				
	IV: 90 °C / 150 °C	_		3,6	2,5	2,1	2,4				
Installati	Installation factors										
Tensile l	oad										
Dry or we	et concrete	γinst	[-]	1,0							
Shear lo	ad										
All install	ation conditions	γinst	[-]	1,0							
Displace	ement-Factors for te	nsile loa	d¹)								
δN,(DLS)-Fac	ctor	[//N	1/22 22 2\1	0,09	0,10	0,11	0,12				
δN,(ULS)-Factor			N/mm²)]	0,15	0,17	0,17	0,18				
Displace	ement-Factors for s	hear load	2)								
δv,(DLS)-Fac	etor	[mn	2/kNI	0,18	0,10	0,07	0,06				
δv,(ULS)-Fac	etor	] ["""	n/kN]	0,25	0,14	0,11	0,09				

#### 1) Calculation of effective displacement:

$$\begin{split} \delta_{\text{N,(DLS)}} &= \delta_{\text{N,(DLS)-Factor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N,(ULS)}} &= \delta_{\text{N,(ULS)-Factor}} \cdot \tau_{\text{Ed}} \end{split}$$

( $\tau_{Ed}$ : Design value of the applied tensile stress)

#### 2) Calculation of effective displacement:

 $\delta_{\text{V,(DLS)}} = \delta_{\text{V,(DLS)-Factor}} \cdot V_{\text{Ed}}$ 

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Factor}} \cdot V_{\text{Ed}}$ 

(V_{Ed}: Design value of the applied shear force)

	_		_				_
fin	ah.	~ r	$\mathbf{c}$	ıne	rЬ	<u>_</u>	. ~
115	C:111	<b>⇒</b> ı	. 71	$H \mapsto$	11)		

#### **Performance**

Essential characteristics under seismic action (performance category C2) for fischer anchor rods and standard threaded rods